Fixing all moduli for M-theory on K3 × K3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M(atrix) String Theory on K3

We conjecture that M-theory compactiied on an ALE space (or K3) is described by 0-branes moving on the ALE space. We give evidence for this by showing that if we compactify another circle, we recover string theory on the ALE space. This guarantees that in the large N limit, the matrix model correctly describes the force law between gravitons moving in an ALE background. We also show the appeara...

متن کامل

M theory on orientifolds of K3 x S1.

We present several Orientifolds of M-Theory on K 3 × S 1 by additional projections with respect to the finite abelian automorphism groups of K 3. The resulting models correspond to anomaly free theories in six dimensions. We construct explicit examples which can be interpreted as models with eight, four, two and one vector multiplets and N = 1 supersymmetry in six dimensions.

متن کامل

An M-Theory Perspective on Heterotic K3 Orbifold Compactifications

We analyze the structure of heterotic M-theory on K3 orbifolds by presenting a comprehensive sequence of M-theoretic models constructed on the basis of local anomaly cancellation. This is facilitated by extending the technology developed in our previous papers to allow one to determine “twisted” sector states in non-prime orbifolds. These methods should naturally generalize to four-dimensional ...

متن کامل

K3 surfaces: moduli spaces and Hilbert schemes

LetX be an algebraicK3 surface. Fix an ample divisorH onX ,L ∈ Pic(X) and c2 ∈ Z. Let MH(r;L, c2) be the moduli space of rank r, H-stable vector bundles E over X with det(E) = L and c2(E) = c2. The goal of this paper is to determine invariants (r; c1, c2) for which MH(r;L, c2) is birational to some Hilbert scheme Hilb(X).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2005

ISSN: 1029-8479

DOI: 10.1088/1126-6708/2005/10/001